-

TE: May 11 1978 . ' PE=T~445
: ALL R & D Personnel .
IMS Ce Hannauer

3JJECT: USER CREATION OF A SHARED LIBRARY (Rev 15)

» rechanism for sharing libraries described in this documert may be
wporary in naturey and may nct be supported by Prime beyond Reve 15,
‘rs are hereoy aavisea not to use these tools to buila their own
iraries unless they are willing to support the implied mechanisms
‘mselvesy incluacing changes to PRIMOS and SEG.

s cocument describes the method presently available for creating a
shared library. Three subjects are dealt with:

General Discussion of Shared Libraries
PRIMOS IV Support for Shared Libraries
Preparing a Shared Library

Using SEG to Build a Sharec Library

Page 2 PE-T~445

SENERAL DISCUSSION OF SHARED LIBRARIES

> Reve 185 mechanism for sharing Libraries permits creation of
versl independant Llibraries or parts of Lliprariese. 1t is
ticipateds for examples that the Fortran Library will corsist of
veral parts. - For ease of reference each {fs -referred to as a
ackage®. There may be more than one package per segment and more
an cpe segment per packace. Each package is considered a separate
ared \library by the cperatinc system. When a3 package is irstallecd 1t
st be assigned a number by PRIMOSe ors alternately must tell PRIMOS
{eh package 1s being dnstalled. Normally it is preferzble to let
IMCS assign the package number. Under some circumstances it may be
asonable for the package to declare its own numbere.

brary sharing is handled by making use of the Direct Entry Call
chanism dntroduced at Reve 14, A Direct Entry Call is managed by
tisfying an external reference with a fault pointer at Load time. (A
ultt pointer has bit 1 of the high order word set).

en cre of these pointers is encountered at run time the hardware
kes a fault and the operating system examines jts collection of
rect entry routines. At Reve 14, §f the routine was rot founds
IM0S 1V aborted with a POINTER FAULT. For Reve 1%y additional code
s acded to PRIMOS IV. 1If there are any shared Libraries the fault
LL be passed on to each Library in turn until it is satisfied or

wung to be missinge.

1e shared libraries reside in shared segments and each must have
;sociated with it a "Ring 3 Fault Handler® which processes any faults
issec on by the operating systeme. The ring 3 fault handler examines
1e ccllection of direct entry calls known to it and if the the fault
3 not satisfiea by any of these the fault hancgler returns to PRIMOS
{e

me rirg 3 fault handler §s Loadea in ring 3 with the Llibrary and
srforass two functions wher a3 faulting call can be satisfied by its
ibrary. One of these is always performed and consists of replacing
he fault pointer with 2 pointer to the actual Llocation in the Library
hich satisfies the fault. The faulting instruction is then restarted
nd execution of the user®s praoagram procedes normally.

" he other function is inftislization. It 4s performed the first time a

o

ibrary 1s invoked in the <course of running a SEG runfile. For
xampley the first time a <call is made teo a shared Fortran Library
outine the initialization is performed. Subsegquent calls to any other
harec Fortran Liorary routines will not cause {nittalizstior to oe
erformece. Howevery should & new SEG runfile be invokeds cr the same
ne restarteds the whole process begins againa

nitialization ¥s required as most Libraries have 1{mpure 1{nitializec
ireas which have to be set up fn a private user segment. Examples of
chis kino of area are {mpure Utink frames anc 4Jnitialized commone.
‘mitdzldsatdan .eoncicsts of pmoving a template copy of the initialized

“ s ——

(7]

Page PE=-T=445

;etermined private user segment. For Reve 15 segment £001 has been

availaole for this purpose to avoic conflicts with nermal SEG
iince Howevery, segment 6001 1s a_ Limitec resource anc must be
‘ea by all shared Llicrariese. Libraries which have extensive
1irements for impure initialized or uninitializead areas will have to
» use of segments in the 4000 range. See the discussion ovelow for
1fls of the initialization processe.

final component required for shared libraries is a mecharism for
inc the shared Library known to PRIMOS IV. When PRIMOS IV §¥s cold
teds no shared Libraries are presente Installing a shzred Llibrary
t be oone each time PRIMOS IV §s brought up and consists of Lloaaing
sharea library into its shared segment(s) and informing PRIMOS of

existencee. PRIMOS then adcs the Library to its taole of shared
raries. This is usually accomplished by running a program which 1is
dJed with the ring 3 fault handler and the library in one SEG Lload
sfore For cdcetailsy, see belowe.

SER VISIBLE PRIMOS IV SUPPORT FOR SHARED LIBRARIES

re are two new PRIMOS routires to support shared librariese. DYNT®s
these routines are included in DIRECV>MAIN.

NEW (<package noe> ¢ <calf> 4 <code>)
This routine 1is called by the Library fnstalling preogram to
tell PRIMOS of a rew librarye. For an example See
DIRECVOMAIN.

<package noe.> is the numoer of this package. 1f cmitteds the next
free number is asstgned.

<ecalf> is the label of the CALF instructior which begins execution
of the ring 3 fault handler.

. <cocde> 1is returned as 2zera {1f the call succeedses ESROOM {f no
.package number was specifiea and there the maximum number of
packages 1{s already installeds or ESBPAR if the call has bad
parameterse.

SNXT This routine tells PRIMOS that this fault handgler could not
satisfy the fault. After giving the call the tault handler
should restore the user program®s registers and PRTN. The
fault will re-occur but this time PRIMOS will pass control to
the Llibrary with package number <paczage noe>¢l {f there is
ones or give an erraor 1f there is note For an exarple see
DIRECVYV>R3IPOFH. This routine must be caltea in PMA as
follows:

CALL LIBNXT
AP <package no.>sS
AP SEBXeSL

<package no.> is the package numdber of the calling routine.

Page 3 PE-T-445

.

3 PREPARING A SHARED LIBRARY
A snared library consists of four separate partse These are:

A replacement Library ULibrary object module which contains
“DYNT*s®™ for the routines to be sharea in ptace of the actual
. :codee
A ring 3 fault handler linked to the library
Arr installation program Linked to the Library
The shared lLibrary {itself

Jel USE AND CREATION OF THE DYNT LIBRARY

A CYNT 1s generated by the PMA DYNT psuedo-ape ¥Yher DYNT is
encountered by SEG at locad times a special Linkage block ¥s created
which contains the name of the routine. ALl references to that
routine are then satisfied by a fault pointer to this blaocke

A DYNT is created by writing @ PMA routine of the following form for
each routine to be shared?

. s

DYNT FGO /efor direct entry call ®FOO"
END .

Each DYNT should be a2 separate module (have its own END statement).
The Library file containing the DYNTS should - as usual - begin with
an RFL and end with an SFL. These are added using EDB.

. 3e2 THE RING 3 FAULT HANODLER

Each ®package® must have §ts own ring 3 fault handler. To make it
easier to create shared Libraries a standard ring 3 fault handler is
previdedy howevery a description of the functionality required is
fncluded below for those needing to write their own ring 3 fault
handler. .

The source of the standard ring 3 fault handler 1s callec RIPOFH and
it is to be founa in UFD DIRECV on the Master Disk,’ R3POFH s
written {in PMA, A customized copy of R3POFH is required for each
package. The customizing is accomplished by assembling {1t with a
hash table contained in a S$INSERT file named HTAB (see below)e.

R3IPFOH will move one initialized area to the specified Locations 1in

@% a private user segment. It attempts to locate the recuired external
reference through a hash table search and consecuently is most
efficient for Llibraries with multiple entriese. It witl workye
howevery, for Libraries with only one entrye.

R3PCFH is coardinates uwith #ha ocbamdoad uwarTn .- - -

Page S PE=T=445

prcvided in SEG for moving cata in SEG run files. In perticular
RZPCFH supplies as an external name a3 5 word blocky SEGSLKs into
which SEG*s Loader will record the details of the template move,
(See the desription of Loading a sharec library which follaows in
Section 4.}

The hash tablees HTAB,y is most easily created by running the utility
program #HASHR in UFD DIRECVe The input to #HASHR is a simple Llist
of the sharec routines contained in the Librarys Not all routines
Lcaded in the Library need be included. Only those routines to
which the programmer wishes users to have access are needede: They
shoul¢ be entered one per Line in the input filee The resulting
hash table contains 5 wcrds per entrys 3 words for the entry ooint
name and 2 for the IP which will be fillec in at Loaa time. #HASHR

‘¥s mostly self describinge The requested hash modulus is the number

cf entries in the table. Cbviously it must be at Least as great as
the number of routines to be hashecs When the hash table has been
created $HASHR reports the average depth of search .to access an
entrye. #HASHR will cycle until the user CTL=P*s out of its thus it
4s possible to try several table sizes until an optimum search depth
is reported.

The user neeaing to write his own ring 3 fault hancdler {s referred
to R3POFH for an examples The ring 3 fault handler must begin with
a CALF instruction, followea by an RSAY. It then locates its DOYNT
through Jnformation stored on the stack and uses the text string to
Locate the routine in its ocwn tablese If the routine is found the
ring three fault hanaler replaces the fault pointer with the correct
pointery restores the registers (RRST) and restarts the faulting
instructions If it 1s not founc the fault handler calls LIBNXT with
its package number and then restarts the instruction which will then
fault again (but to a new packagele.

33 THE INSTALLATION PROGRAM

€ach "package"™ must be installed by a separate <call ¢to the new
PRIMOS IV routine LIBNEW (see above). Several packages can in
theory be installed at oncey howevery a standard routine is proviced
which will install one and which is coordinmated with R3IPOFHe The
source of this routine is located in UFD DIRECY as MAIN. MAIN does
not need to be customized fer each package. Assuming that MAIN has
peer Loaded as described in section 49 it Wwill either cause PRIMOS
IV to assign a package number or will pass on to PRIMOS IV as
follows:

R LIa000 /*have PRIMOS IV assign the package numcere.
R LI400Q0 1/58 /=tell PRIMCS IV to assign number 6

In additieon to the 1{ntallation routines MAIN contairs the two
DYNT®s, LI?Ngu anc LISNXTe regquireag for communication with PRIMOS.

I\

Page 6 FE=T-44¢

of the functionality of MAIN followse

The installation routine must perform at lLeast two operations for
the Llibrary. The first of these is to snap the Link to LIBNXT for
the ring 3 fault hanaler. The ring X fault handler 1s orjginally
installed by the SHARE command with write access so that this
aadress may be storeo in the shared library segment containing the
fault handler. The dinstall program must set up the IP so that the
library may later be sharec with read/execute access only.

Secondlyy the installation routine must call LIBNEW to 1nstatl the
Library either passing the package number to be used or accepting
one returned by LIBNEW. If PRIMOS assigns the package numpery it
must also be passed to the ring 3 fault handler.

3e4 SPECIAL PREPARATION OF LIBRARY ROUTINES FOR SHARING

No special preparation of Library routines is regquireac for loacing
as a shared Libraryes As a first attempt at creating a shared
Ltibrary it 1s reasonable to simply load the existing Library as
described in the Section 4 anc pgrocece. For ftinal fnstallation as a
shared Library Jn use system wide there are some efficiency
considerations which may make it appropriate to massage the library
somexhat prior to Loading 1t as a shared Llibrarye. A general
discussion of Loading a shared library will be helpful at this time
for ungerstanding the discussion of L(ibrary optimization which
followse

The ring 3 fault handler anc alt pure procedure are (oaded 1into 1iIn
sharea segments. ALL COMMON blocksey impure orocedure and impure
link frames must be lLoaced into private user segments. Pure Link

. frames may be loaded either in private or shared segments. When the

Library Load 1s completes SEG is instructed to move a copy of the
impure area into one of the shared segments from which it will serve
as the template for the ring 3 fault handler inftifalization routine.

Shared Libraries are supposed to benefit wusers by reducing SEG
restore times and by a system wide reduction of memory utitizatien
through the use of the shared memory image of the Library routines.
There are at least two ways in which the goal of benefitirg the user
can be subverted. First paging activity can be increased as a
result of the ogispersal of the usert®s run image over more pages and
segrents than was the case with the unshared librarye. Secondly
performance ¢can be dcegracec by excessive package 1{nitializatioen
timese.)

It is probably not feasible to completely eliminate the reed for
package initialization. Howevery, an attempt can be made to minimize
ite In some cases the size of Link frames can be redaLcede In
particular FCRTRAN routines can pe recompilea with the DYNM option
tc put most Llocal wvariables on the stacke This must be done
carefully so that varianlas L2 2o -

-

«

Page 7 PE-T=-445

alsc pe modifiead to put most local variables on the stacke In ‘this
process many Link frames will become pures These can be Lozded into
the sharega procegure segment(s) which removes ¢them from the
initialization process entirely.

Norral SEG loading usually puts COMMON blocks in amongst the Link
framese At Lload time wuninitialized COMMON blocks may be defined
with the A/SY command prior to loading the Library object files. 1In
this way uninitialized COMMON can be gotten out of the way of
inftialized COMMON and dmpure Llink frames. Alternatively the
Loacer®s CO command may be used to separate COMMON from link frames.

'Hhenithe template impure area is declared to SEG's Loader only the

initialized area needs to be definede In this way 1f uninitialized

“areas have been separated from initialized areasy the overall length

‘of the inittalization can be minimized.

The secaond step which may be taken is to organize the procecure load

‘so that routines which call each other or which are Likely to be

callied together are Lloaded contiguouslye. It may also be
acvantageous to load some routines on page boundries using the
Loacer®s "P/LO" commande Routines with pure Link frames can also be
Loaced under the MI option which causes the Llink frame to be loaded
right after the procedure frame in the procedure segment. This will
help reduce paging activity by reducing the number of pages which
must be active at any one time.

A word on finding pure link frames may be wuseful here. Firste 2
Link frame 1{s pure onty 1f at no time auring the execution of 3
program will any (egitimate attempt be made toc store a new value in
any of 1its Llocationse. At the present ¢time Uink frames may
customarily contain ECB'ss pointers to external names anc COMMON

»blackss Ltocal variables and constants. Local variables (incluaing

arrays) and pointers to external names are likely to make tne Llink
frame 1impure. We have discussed the technigues for reducing or
eliminating local variables from the Link frameo.

Pointers to external names may be impure because they may be fault
pointers to direct entry calls either to PRIMOS IV or to other
Librariess There are two ways of determining whether such pointers
are- present in any giver Link frame. The first is to examine a
Listing concordance for the presence of such names. The second s
to dindividually load each routine with SEG's loader to determine if
such routines are called by {te.

™ LOADING A SHARED LIBRARY USING SEG

has been descrived aboves 2@ shared library is Loaded together with a

ing 2 fault handler and an idirstallation routine. The {fnstallation
sutine iJs best loaded into segment 4000 so that it occupies only one
agment and can be startec up as an R=-mode proaram. The rinse 3 fault

Pace 8 PE=T<~445

frames to be Lloaded 4dnto the shared segmentss they shoulc 5e loaded
under the MI option of SEG's Loacer so that they will be contiguous
Wwith their procecdure frames. In the anctated example which fcllows it
is assumed that the user s familiar with SEG*s Loacer and has read the
documentation for SEG Reve 1S5. Further, it 4s assumed that the wuser
plans to optimize ¢the Lload of the Library anc that there are some
routines with pure Llink frames which have been separated froam the
remaincer of the routines soc that their Link frames may be toaded in
the precedure segmente. : :

The first responsibiility of user planning to share a Ltibrary -is ¢to
coordinate the utilization of segments below 4000 so that the new
sharecg liporary will not occupy segments assigned for other purposese.
Secondlyes 1f part of segment 8001 is to be useds usage of this segment
must also be coordinated with existing shared Llibraries. As of the
writing of this documents segnment 6001 ¥s unused above S4000 (octal).
In the example below it 4s assumed that ¢this is still the case.
Segment 2028 has been selected for the pure procedure only for purposes
of the example below.

The following is a sample command file:

Vg

SEG)

LOAD #FINST B
MI /*allow mixing of procedure and data.
SP /*Read RUNIT into segment 4000

for running MAIN as an R-mode

programe no arguement neededc.
A/SY DUMMY PROC 6001 S3000 /*move up to free locse in 6001

treating 6001 as a procedure

segment for loading under

the MI optiocn.

A/SY LOWS 6001 O /xa symbol tor the bottem of
the initialized areae.
A/SY COMMNL1 PROC 6001 2000 /*declare uninitialized COMMON,
S/L0 B_R3POFH 0 2020 2020 /*load the ring 3 fault handlers
Link and procecure in sege. 2020
S/L0 SHR1 0 2020 &001 /*SHR1 aqoces not have pure
' link framese.
P/LO0 SHR2 2020 6001 /+*load SHR2 on a page boundry for
efficiency at execution time.
D/L0 SHR3 .
S/L0 SHR4 0 2020 2020 /+load the first mocule with
N pure Link framese.
D/L0 SHRS /*SHRS also has pure Link framese.
S/L0 SHRé 0 2020 6001 /*back to impure Link frames.
D/LO SHR7 /+the last of the userts liorary
D/L1 SFTNLSB /*pure Fortran lLibrary (sharea).
S/LI 1IFTNLB 0 6001 6001 = /+impure library must be

fnitialized alcng with impure
data. This may not be necessary
if a LOAD COMPLETE was obtairea
after Loading SFTNLB.

Page 2 PE-T-445S

D/PL . A /+*if no LOAD COMPLETE was obtaired. -

MA 2 : /*check the loade

MV.LOUWS SEGBLK 2020 /*maove the initializea area in

‘) -7 segment €000 to the top of the
S . shared proceaure segment (2020).
MA SHLIEMAP - /*get a map (its a good idea).

RE /*SEG now saves runfile automatically.

SH /+split out sharable segments
ST Tt and segment 4000,

(15 Q- /s({response to *TWO CHARACTER ID')

CELETE .- . Lot /+*done with SEG run file.

GU- A : L - /r*return to PRIMOS command level.

CO‘TTY‘ . :

N teast two files will have been created when the SH commard was given
aY’ SE6G command Level. The first of these will be named LI2020 - §n the
examplee. LI2021y etce. may also be created 1f the Library is large.
These files are the shared Library and should be shared at PRIMOS 1V
startup time -as part of the shared lLibrary installation. The second
(or Last) file willL be named LI&000. This file contains the
installation program - MAINe. Since it was loaced after the SP command
f1as given to SEG's loader it ¥s a self contained run file and can be
run from PRIMOS IV command lLevel to install the librarye The following
commana stream 4s an example of shared liorary instalilatione These
commands can only be given from the system console.

OPR 1 o /xturn special privliedges on

SHARE LI2020 2020 700 /+*load Library into segment 2020
/=with write access .

R LIA&D0O0 /*install the shared Library

SHARE 20290 /+*re-share 2020 with read/execute
/taccess only

orR : /*turn special priviedges off

If i1t is necessary to reinstall the Llibrary with out bringing the
syster cdown (this may pe a risky proposition) and the user knows the
package number and the user is using the standard supplied irnstallation
routine the package number (for example €) may also be supplied when
running LI4000 as follows:

R LI&Q00 1/6

	Cover Page
	1
	General Discussion of Shared Libraries
	2
	User Visible PRIMOS IV Support For Shared Libraries
	3
	Preparing a Shared Library
	4
	5
	6
	Loading a Shared Library Using SEG
	7
	8
	9

