
TE: May lit 1978 . PE-T-445

: All R & D Personnel .

3M: C« Hannauer

3JECT: USER CREATION OF A SHARED LIBRARY (Rev 15)

» irechanism for sharing libraries described in this document may be
loorsry in nature* and may net be supported by Prime beyond Rev» 15«
•rs are hereoy aaviseo not to use these tools to build their own
traries unless they are willing to support the implied mechanisms

f^ 'mselves* inclualng changes to PRIMOS and SEG*

s cocument describes the method presently available for creating a
shared library* Three subjects are dealt with:

General Discussion of Shared Libraries
PRIMOS IV Support for Shared Libraries
Preparing a Shared Library

d* • Using SEG to Build a Shared Library

•f̂ s

Page 2 PE-T-445

3ENERAL DISCUSSION OF SHARED LIBRARIES

» Rev. 15 mechanism for sharing libraries permits creation of
/ersl Independant libraries or parts of HDrarles. It Is
tldpated* for example* that the Fortran Library will corslst of
serai parts. For ease of reference each 1s -referred to as a
ackage". There may be more than one package per segment and more
an ere segment per package. Each package 1s considered a separate
ared library by the operating system. When a package 1s Installed 1t
st be assigned a number by PRIHOS* or* alternately must tell PRIHOS
I ch package 1s being Installed. Normally 1t 1s preferable to let
IMOS assign the package number. Under some circumstances 1t may be
asonable for the package to declare Its own number.

brary sharing 1s handled by making use of the Olrect Entry Call
charlsm Introduced at Rev. 14. A Direct Entry Call 1s managed by
tlsfylng an external reference with a fault pointer at load time. (A
ult pointer has bit 1 of the high order word set)*

en ere of these pointers 1s encountered at run time the hardware
kes a fault and the operating system examines Its collection of
rect entry routines. At Rev. 14* 1f the routine was not found*

v IMOS IV aborted with a POINTER FAULT. For Rev. 15* additional code
s added to PRIHOS IV. If there are any shared libraries the fault
II be passed on to each library In turn until 1t 1s satisfied or
)uno to be missing.

ie shared libraries reside 1n shared segments and each must have
jsodated with It a "Ring 3 Fault Handler" which processes any faults
jssec on by the operating system. The ring 3 fault handler examines
ie collection of direct entry calls known to 1t and If the the fault
5 not satisfied by any of these the fault handler returns to PRIMOS
/..

y\e rlrg 3 fault handler Is loadea 1n ring 3 with the library and
erforms two functions wher. a faulting call can be satisfied by Its
ibrary. One of these 1s always performed and consists of replacing
he fault pointer with a pointer to the actual location In the library
hlch satisfies the fault. The faulting Instruction 1s then restarted
nd execution of the user's program procedes normally.

he other function 1s Initialization. It 1s performed the first time a
Ibrary 1s Invoked In the course of running a SEG runflle. For
xample* the first time a call 1s made to a shared Fortran Library
outlne the Initialization 1s performed. Subsequent calls to any other
hareo Fortran Llorary routines will not cause Initialization to oe
erformed. However* should a new SEG runflle be Invoked* cr the same
ne restarted* the whole process begins again.

n1t1allzatlon 1s required as most libraries have Impure 1n1t1al1zec
ireas which have to be set up 1n a private user segment. Examples of
:h1s kino of area are Impure link frames and Initialized common.
•«o4 sM,aHftn ,consists of moving a template copy of the Initialized

Page 3 P E - T - 4 4 5

:eterained private user segment. For Rev. 15 segment £001 has been
avallaole for this purpose to avoid conflicts with ncrmal SEG

fine. However* segment 6001 is â limited resource and must be
*eo by all shared licraries. Libraries which have extensive
iirements for impure Initialized or uninitialized areas will have to
» use of segments in the 4000 range. See the discussion oelow for
ills of the Initialization process.

final component required for shared libraries is a mecharism for
ins the shared Horary known to PRIMOS IV. When PRIMOS IV 1s cold
-ted* no shared libraries are present. Installing a shared library
t be aone each time PRIMOS IV is brought up and consists of loaaing
shared library into its shared segment<s) and Informing PRIMOS of
existence. PRIMOS then adds the library to Its taole of shared

raries. This 1s usually accomplished by-running a program which Is
ded with the ring 3 fault handler and the library in one SEG load
slor. For details* see below.

SER VISIBLE PRIMOS IV SUPPORT FOR SHARED LIBRARIES

re are two new PRIMOS routines to support shared libraries. DYNTfs
these routines are included in 0IRECV>MAIN.

NEW (<package no.> * <calf> * <code>)
This routine Is called by the library installing program to
tell PRIMOS of a new library. For an example see
DIRECV>HAIN.

<package no.> 1s the number of this package. If omitted* the next
free number is assigned.

<calf> is the label of the CALF Instruction which begins execution
of the ring 3 fault handler.

. <code> 1s returned as zero if the call succeeds* ESROOM if no
package number was specified and there the maximum number of
packages 1s already Installed* or ESBPAR if the call has bad
parameters.

SNXT This routine tells PRIMOS that this fault handler could not
satisfy the fault. After giving the call the fault handler
should restore the user program's registers and PRTN. The
fault will re-occur but this time PRIMOS will pass control to
the library with package number <pac*age no.>*l 1f there is
one* or give an error if there Is not. For an exairple see
DIRECV>R3P0FH. This routine must be called in PMA as
follows:

CALL LIBNXT
AP <package no«>*S
AP sex*SL

<package no.> is the package number of the calling routine.

Page PE-T-445

3 PREPARING A SHARED LIBRARY

A snared library consists of four separate parts* These are:

A replacement library library object module which contains
•DYNTfs" for the routines to be sharea 1n place of the actual

, code*
A ring 3 fault handler linked to the library
An installation program linked to the library
The shared library itself

3.1 USE AND CREATION OF THE DYNT LIBRARY

A CYNT is generated by the PMA DrNT psuedo-op* Vher DYNT is
encountered by SEG at load time* a special linkage block is created
which contains the name of the routine* All references to that
routine are then satisfied by a fault pointer to this block*

A DYNT is created by writing a PMA routine of the following form for
each routine to oe shared:

SEG
DYNT F00
END

/*for direct entry call "F00"

Each DYNT should be a separate module (have its own ENO statement)*
The library file containing the DYNTS should - as usual - begin with
an RFL and end with an SFL* These are added using EDB*

3.2 THE RING 3 FAULT HANDLER

Each "package" must have its own ring 3 fault handler* To make it
easier to create shared libraries a standard ring 3 fault handler is
provided* however* a description of the functionality required is
included below for those needing to write their own ring 3 fault
handler*

The source of the standard ring 3 fault handler is callec R3P0FH and
1t is to be found in UFD DIRECV on the Master Disk. R3P0FH is
written in PMA. A customized copy of R3P0FH is required for each
package* The customizing is accomplished oy assembling it with a
hash table contained in a SINSCRT file named HTAB (see below)*

R3PF0H will move one initialized area to the specified locations in
a private user segment* It attempts to locate the reauired external
reference through a hash table search and conseauently is most
a * * A + 4 mr% •• 4 « •» I * « m •» » •* ~ *. u U k - . . I «- £ ~ I ~ ~ _ t .. .2 - ~ T *> . . l i t . . ~ m t, -efficient for libraries with multiple entries,
however* for libraries with only one entry*

R3PCFH is coordinated ui*h *w.

It will work*

. * • * . - . * * * - - J r it —

Page 5 PE-T-445

provided in SEG for moving cata in SEG run files* In particular
R3PGFH supplies as an external name a 5 word block* SEGSLK* into
which SEGfs Loader will record the details of the template move*
(See the desriation of loading a sharec library which follows in
Section <**)

The hash table* HTAS* is most easily created by running the utility
program #HASHR in UFD OIRECV* The input to 3HASHR is a siirple list
of the shared routines contained in the library* Not all routines
loaded in the library need be included* Only those routines to
which the programmer wishes users to have access are needed* They
should be entered one per line in the input file* The resulting
hash table contains 5 words per entry* 3 words for the entry oolnt
name and 2 for the IP which will be filleo in at Load time* 4HASHR

iy i s mostly self describing* The requested hash modulus is the number
of entries in the table* Obviously it must be at least as great as
the number of routines to be hashecu When the hash table has been
created tfHASHR reports the average depth of search to access an
entry. «HASHR will cycle until the user CTL-P»s out of 1tt thus it
Is possible to try several table sizes until an optimum search depth
1s reported*

The user needing to write his own ring 3 fault handler 1s referred
to R3P0FH for an example* The ring 3 fault handler must oegin with
a CALF instruction* followed by an RSAV* It then locates its DYNT
through information stored on the stack and uses the text string to
locate the routine in its own tables* If the routine 1s found the
ring three fault handler replaces the fault pointer with the correct
pointer* restores the registers (RRST) and restarts the faulting
instruction. If it Is not found the fault handler calls LIBNXT with
its package number and then restarts the Instruction which will then
fault again (but to a new package)*

new

3.3 THE INSTALLATION PROGRAM

Each "package" must be installed by a separate call to the
PRIMOS IV routine LIBNEU (see above)* Several packages can in
theory be Installed at once* however* a standard routine 1s provlced
which will install one and which is coordinated with R3P0FH. The
source of this routine is located in UFD DIRECV as MAIN. MAIN does
not need to be customized for each package* Assuming that MAIN has
beer loaded as described in section 4* it will either cause PRIMOS
IV to assign a package number or will pass on to PRIMOS IV as
follows:

R LI4000 /*have PRIMOS IV assign the package nuiscer*

R LI4000 1/6 /*tell PRIMOS IV to assign number 6

In'addltion to the Intallation routine* MAIN contains the two
DYNT»s* LIBNEU anc LI9NXT* required for communication with PRIMOS.

Page 6 PE-T-445.

of the functionality of MAIN follows.

The installation routine must perform at least two operations for
the library. The first of these 1s to snap the link to LIBNXT for
the ring 3 fault handler. The ring 3 fault handler is originally
installed by the SHARE command with write access so that this
aodress may be stored 1n the shared library segment containing the
fault handler. The install program must set up the IP so that the
library may later be sharec with read/execute access only.

Secondly* the installation routine must call LI6NEU to install the
library either passing the package number to be used or accepting
one returned by LIBNEW. If PRIMOS assigns the package numoer* it

^ must also be passed to the ring 3 fault handler.

3.4 SPECIAL PREPARATION OF LIBRARY ROUTINES FOR SHARING

No special preparation of library routines 1s required for loading
as a shared library. As a first attempt at creating a shared
library it is reasonable to simply load the existing library as

S described in the Section 4 and procece. For final installation as a
f^ shared library in use system wide there are some efficiency

considerations which may make it appropriate to massage the library
somewhat prior to loading it as a shared library. A general
discussion of loading a shared library will be helpful at this time
for understanding the discussion of library optimization which
follows.

The ring 3 fault handler and all pure procedure are loaded into In
shared segments. All COMMON blocks* impure procedure and impure

f^ link frames must be loaced into private user segments. Pure link
. frames may be loaded either in private or shared segments. When the
Library load 1s complete* SEG 1s instructed to move a copy of the
impure area into one of the shared segments from which it will serve
as the template for the ring 3 fault handler initialization routine-
Shared libraries are supposed to benefit users by reducing SEG
restore times and by a system wide reduction of memory utilization
through the use of the shared memory image of the library routines.
There are at least two ways in which the goal of benefiting the user
can be subverted. First paging activity can be increased as a
result of the dispersal of the user's run image over more pages and
segments than was the case with the unshared library. Secondly
performance can be aegracec by excessive package initialization
t imes.

v It 1s probably not feasible to completely eliminate the reed for
package'lnl tialization. However* an attempt can be made to minimize
it. In some cases the size of link frames can be reduced* In
particular FORTRAN routines can be recompiled with the DYNM option
tc put most local variables on the stack. This must be done
carefully so that uaf4a*i~~ .-»-•* -»- *•-•

Page 7 PE-T-445

aLsc oe modified to put most Local variables on the stack* In this
process many link frames will become pure* These can be loaded into
the shared procedure segment(s) which removes them from the
initialization process entirely*

Norral SEG Loading usually puts COMMON blocks in amongst the link
frames* At load time uninitialized COMMON blocks may be defined
with the A/SY command prior to loading the library object files* In
this way uninitialized COMMON can be gotten out of the way of
initialized COMMON and impure link frames* Alternatively the
Loader's CO command may be used to separate COMMON from link frames*

When the template Impure area 1s declared to SEG's Loader only the
initialized area needs to be defined* In this way if uninitialized

jiareas have been separated from initialized areas* the overall length
of the Initialization can be minimized*

The second step which may be taken Is to organize the procecure load
so that routines which call each other or which are likely to be
called together are loaded contiguously* It may also be
advantageous to load some routines on page boundries using the
Loacer*s "P/LO" command* Routines with pure link frames can also be
loaced under the MI option which causes the link frame to be loaded
right after the procedure frame 1n tne procedure segment* This will
help reduce paging activity by reducing the number of pages which
must be active at any one time*

A word on finding pure link frames may be useful here* First? a
link frame 1s pure only 1f at no time during the execution of a
program will any legitimate attempt be made to store a new value in
any of Its locations* At the present time link frames may
customarily contain ECB's* pointers to external names anc COMMON

^blocks* local variables and constants* Local variables (including
arrays) and pointers to external names are Likely to make tne link
frame impure* We have discussed the techniques for reducing or
eliminating Local variables from the link frame*

Pointers to external names may be impure because they may be fault
pointers to direct entry calls either to PRIMOS IV or to other
Libraries* There are two ways of determining whether such pointers
are present in any given link frame* The first is to examine a
listing concordance for the presence of such names* The second is
to individually load each routine with SEG's loader to determine If
such routines are called by it*

LOAOING A SHAREO LIBRARY USING SEG

Pace PE-T-445

frames to be loaded Into the shared segments* they should be loaded
under the MI option of SEG*s Loader so that they will be contiguous
with their procedure frames. In the anotated example which fellows 1t
1s assumed that the user Is familiar with SEG»s Loacer and has read the
documentation for SEG Rev* 15.
plans to optimize the load
routines with pure link frames
remainder of the routines so
the procedure segment*

Further* 1t 1s assumed that the user
of the library and that there are some
which have been separated from the
that their link frames may be loaded 1n

The first responsibility of user planning to share a library -1s to
coordinate the utilization of segments below 4000 so that the new
shared Horary will not occupy segments assigned for other purposes*
Secondly* 1f part of segment 6001 1s to be used* usage of this segment
must also be coordinated with existing shared libraries* As of the
writing of this document* segment 6001 1s unused above 54000 (octal)*
In the example below 1t 1s assumed that this 1s still the case-
Segment 2020 has been selected for the pure procedure only for purposes
of the example below*

The following 1s a sample command file:

r
SEG
LOAD 3FINST
MI
SP

A/SY DUMMY PROC 6001 53000

A/.SY LOUS 6001 0

A/SY C0MMN1 PROC 6001 2000
S/LO B.R3P0FH 0 2020 2020

S/LO SHR1 0 2020 6001

P/LO SHR2 2020 6001

0/LO SHR3
S/LO SKR4 0 2020 2020

D/LO SHR5
S/LO SHR6 0 2020 6001
D/LO SHR7
D/LI SFTNLB
S/LI 1FTNL3 0 6001 6001

/•allow mixing of procedure and data
/•Read RUNIT Into segment 4000
for running MAIN as an R-mode
program* no arguement needed*
/•move up to iree Iocs* 1n 6001
treating 6001 as a procedure
segment for loading under
the MI option.
/•a symbol for the bottem of
the Initialized area*
/•declare uninitialized COMMON.
/•load the ring 3 fault handler*
Link and procedure 1n seg* 2020
/•SHR1 does not have pure
link frames*
/•load SHR2 on a page boundry for
efficiency at execution time*

/•load the first module with
pure link frames*
/•SHR5 also has pure link frames*
/•back to Impure link frames,
/•the last of the user's library
/•pure Fortran library (shared)*
/•Impure library must be
Initialized along with Impure
data* This may not be necessary
1f a LOAD COMPLETE was obtained
after loading SFTNLB.

Page PE-T-445

D/PL
MA
MV-

HA
RE
SH

LI"

2
LOUS SE6BLK

SHLIBMAP

• " -

DELETE" -
GU
CO

V~
ax

? m. '- . '. .

TTY

least two f•
SES command

2020

-

: . . .
_
-•

i les
leve

/•if no LOAD COMPLETE was obtained. "
/•check the load*
/•move the initializeo area in
segment £.000 to the top of the
shared proceaure segment (2020).
/•get a map (its a good idea).
/•SEG now saves runfile automatically
/•split out sharable segments
and segment 4000.
/•(response to fTW0 CHARACTER ID')
/•done with SEG run file.
/•return to PRIMOS command level.

will have been created
I. The first of these

example. LI2021? etc.
These files are the shared
startup time as part of
(or last) file will be
installation
'was given to

when the SH command was given
will be named LI2020 - in the

may also be created if the library is large.
library and should be shared at PRIMOS IV
the shared library installation. The second
named LI4000. This file contains the

program - MAIN. Since it was loaaed after the SP command
SEG*s loader it is a self contained run file and can be

run from PRIMOS IV command level to install the library. The following
eoiRsisno stream is an example of shared liorary installation. These
commands can only be given from the system console.

OPR 1
SHARE LI202Q

ft LI4000
SHARE 2020

0 ^

2020 700
/•turn special privledges on
/•load library into segment 2020
/•with write access
/•install the shared library
/•re-share 2020 with read/execute
/•access only
/•turn special privledges off

If it is necessary to reinstall the library with out bringing the
system down (this may De a risky proposition) and the user knows the
package number and the user is using the standard supplied installation
.routine the package number (for example 6) may also be supplied when
running LI4000 as follows:

R LI4000 1/6

	Cover Page
	1
	General Discussion of Shared Libraries
	2
	User Visible PRIMOS IV Support For Shared Libraries
	3
	Preparing a Shared Library
	4
	5
	6
	Loading a Shared Library Using SEG
	7
	8
	9

